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ABSTRACT

We present an algorithm for automatic detection of solid-
phase (polony) Polymerase Chain Reaction (PCR) objects.
The goal is to detect the location and size of each polony
present in an image. Using a statistical model for an image of
a polony, we are able to weigh different hypothesis, including
arrangements of multiple overlapping objects. The algorithm
uses a coarse-to-fine approach. A coarse version of the model
is used to find candidate object locations and sizes with a low
computational cost. More accurate versions of the full model,
are then used to test for object presence only at the candidate
locations.

Index Terms— Object detection, image analysis, data
models, biomedical image processing.

1. INTRODUCTION

We present an algorithm for multiple object detection and test
it on images of an application of solid-phase (polony) PCR to
gene expression analysis [1]. The ability of polony PCR to
detect single molecules of DNA makes it suitable for study-
ing gene expression in single cells. Gene expression is the
process by which genes in chromosomes, the information-
carrying molecules of the cell, are converted into proteins, the
functional molecules of the cell. Not every gene is expressed
in every cell, and one sense of the identity of a cell can be
defined as the set of genes it expresses. It is increasingly
being appreciated that cell-to-cell variation in gene expres-
sion ("noise”) plays a role in processes such as development
and aging and may be involved in diseases such as cancer
[2,3,4,5].

Solid-phase PCR is performed in a polyacrylamide gel
attached to a glass microscope slide. One PCR primer
is crosslinked to the gel and the other is free to diffuse.
PCR-amplified sequences are detected by hybridization of
fluorescently-labeled complementary oligonucleotide probes.
Labeled slides are imaged on a micro-array scanner which
raster-scans a focused laser beam over the slide and detects
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fluorescence with a photomultiplier tube. This method en-
ables detection of single DNA molecules by making many
copies of them and restricting the copies spatially to the vicin-
ity of the starting molecule, separated from other molecules

A few methods are known by the authors to be used for
polony detection [6, 7]. Usually morphology toolboxes from
packages as Matlab and lab-made image processing soft-
ware is used for this task. Model based methods, pretrained
classifiers and some image pre-processing techniques have
been used in similar images as those of single fluorescent
particles[8, 9, 10]. However, most of these methods are un-
able to describe groups of pixels and lack the flexibility to
test different explanations for the data when multiple objects
are present in a scene.

The main contribution of this paper is a model-based
method for multiple polony detection. The algorithm relies
on a statistical model of the data, providing the ability to
formulate well defined hypothesis tests for the presence of
objects and the flexibility to deal with multiple polonies lo-
cated in a very small region. Other advantages include little
parameter tuning and efficient computation. A more complex
version of the method presented here, applied to a different
setting including motion is presented in [11]. Similar ideas of
multiple object detection in the analysis of static images can
be found in [12, 13].

2. STATISTICAL MODEL

The image of a polony is modeled by a bell-shaped function
of variable width, location, and amplitude, to which are added
a constant background and noise. The intensity at location
x = (x1,72) is modeled as I(z) = Gy (x) + C + (5, ;..
where G, () is a bell-shaped function with parameter w, C
is a baseline and (,,_ _ is i.i.d noise that follows a normal
distribution with mean zero and standard deviation o,,,sc.

Multiple objects might be present in the same region pro-
ducing a polony configuration. The general model of the im-
age intensity I (x) is then given by

I(z) = C(2) + > Gu () + (o, 6)
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Fig. 1. A profile of the intensity values of a polony and the
fitted model.

where 7 is an index over polonies and C'(x) is the background
intensity at x

We assume that C' > 0 is smoothly changing over the im-
age, so that when a small region is considered, it is reasonable
to assume that C' is constant. Thus, for each object w, we may
have a different constant value C,, for the immediate region
around p. We define

Go(z) = A lz—nl?/(2r%) (2)

where w = (u,r, A,C) is the state vector composed of the
location i, the width 7 and the maximum intensity A.

If we assume that the intensity values of a polony are neg-
ligible at distance greater than Jr; from p;, we can define a
simpler model for the image intensities I(x):

Iz)=C+ Y

it —x| <dr;

Gui(2) + Coppiae 3)

where C' is assumed to be the same constant for the nearby
polonies.

Variations of the Gaussian model (2) have been used in
single fluorescent particle applications [8, 10]. In these cases,
the Gaussian model is used as an approximation to the point
spread function of the microscope. There is no strong physi-
cal justification for the model presented here, other than shape
resemblance (see Figure-1). However, this model is enough
for the purpose of this application, that is, a description of the
polonies in terms of location, relative size and intensity.

3. DETECTION PROCEDURE

Given an image I, detection consists of finding a set of k ob-
jects (w1, wa, ..., wy ), for an unknown integer k¥ < K, which
maximizes the posterior

arg max P ((wi)le | I) , %)

Solving (4) is a difficult optimization problem over an un-
known number of variables. To approximate the solution we
use a coarse-to-fine approach. First, we define a simplified bi-
nary oriented edge based model, which allows us to ignore the

717

amplitude state variable A and the baseline C'. This leads to
a simple and efficient edge-based test that eliminates the vast
majority of possible object locations and bounds the number
of objects present in the image.

Subsequently, the precise shape parameters of candidate
polonies are estimated using the full static data model (3)
which is adapted to the number of candidate detections in a re-
gion. This step can also eliminate detections if the estimated
amplitude A for any of the candidates is below a threshold.
All the tests are standard statistical tests derived from the hy-
pothesized data distribution using conservative thresholds to
avoid losing true positives.

3.1. Edge based models

In the first step of detection we aim at deriving a test that
is invariant to amplitude and baseline variations, in order to
avoid the computationally intensive task of actually estimat-
ing these variables, for every candidate location. Detection
thus starts using information only from locations where there
is large variation in image intensity. We focus our attention
on the spatial gradient of the polony template (1). Therefore,
high values will occur at the circles around the centers of the
objects at radius given by 7;.

Thus, the first coarse model for polonies is defined as a set
of templates of circles of radius r € X, where X is a finite set
of feasible polony sizes. The templates are defined in terms
of binary features labeled according to orientation. Accord-
ingly, the input image is transformed into a matrix of binary
features. At each pixel, the presence and label of a feature
is determined by thresholding the magnitude of the gradient
of the image. Using low thresholds, a large number of fea-
tures are likely to occur on circles, indicating the presence of
a candidate object.

The first step of detection reduces to circle detection in an
array of binary oriented edges, which can be solved efficiently
using the Hough transform [14]. A simple probability com-
putation sets a conservative threshold on the feature counts
to avoid false negatives, yielding an initial list of candidate
locations and sizes for the vesicles.

To avoid unnecessary processing we use a mask to de-
fine a region of interest (ROI) for object detection. All can-
didate detections that are outside the ROI are automatically
discarded.

Assuming constant size among different images, the ROI
is implemented as a binary mask that covers the ellipsoid that
contains the gel (see Figure-3a). The mask is aligned with the
input image I, by finding the displacement d € D that mini-
mizes the sum ) | o Das(z+d), where E is the set of pixels
selected after thresholding the magnitude of the gradient of 7
and Dy (z) is the distance from each pixel to the nearest pixel
on the edge of the ROI. Thus, D, is the distance transform
of the edges of the mask [15], which can be pre-computed
offline because it does not depend on /.



3.2. Refined models

At the candidate locations that survived the previous test we
compute the optimal values of the state variables using the full
gray level model which may involve several polonies simulta-
neously. Assume first that in a region of interest R of size Jr
around a given detection (u, r) there are no other detections.
We try to find the optimal value for the state variables in the
image model defined in (3),

arg min Z [I(z) — C — Ag,..(z))?. 5)
w,r,A,C 2CR

We optimize the likelihood in (5) by iterating between
pairs of variables (4, 7), and (A4, C). For fixed values of y and
r, we can estimate the global optimum of A and C' using lin-
ear regression, with g, (), z € R acting as the independent
variable. Then, for fixed A, C, the cost is optimized in (u, )
using a conjugate gradient algorithm[16]. The procedure is
iterated until the relative error is close to 1 or the number of
iterations is too high. A standard ¢-test [17] at some signifi-
cance level « is then used to determine whether the amplitude
A is zero, in which case we reject the detection w.

3.3. Object configurations

When the region R includes K > 1 polonies, the full model
given in equation (3) is used. In this case we have to mini-
mize:

J(wi,..ywi) =Y (@) =C =" Apgiu,.m) (@) (6)

zER k=1

where k runs over detections wy, such that py € R

The methods used before apply in the multiple polony
framework. Now for fixed ux, 71,k = 1,..., K perform a
multiple linear regression to solve for C, Ax, k = 1,..., K
and the conjugate gradient method is implemented simultane-
ously on all the remaining variables. The significance of each
fit is determined using a standard ¢-test to determine whether
Ay, is zero.

In practice, region R is preferred to be small, containing
a few, close objects. The computation time, specially for the
conjugate gradient algorithm, increases considerably fast, as
a function of the area of R. Thus, regions are bound to have
a maximum size sy;ax. Let sg to be the radius of the region
R and Lp, the list of objects w inside R. Starting with object
w1, we set Lr <+ {w1} and s « 4r;. For each object w’
with center inside R, we set Lr +— Lg U w’ and increase s
to include the new object (s «— min{s + 2, sprax }). The
(multiple) Gaussian fitting procedure is then applied using all
objects inside R, but the parameter update is accepted only
for those candidate objects that are not rejected and fall com-
pletely inside R. Thus, the process must be repeated with
new regions, for each of the candidate objects that did not fall
completely inside R.
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4. RESULTS

The algorithm was implemented in C++. It is being used with
images of an application of solid-phase (polony) PCR to gene
expression analysis. Gray level images of size 1726 x 2485
are recorded as described in section-1 and stored in TIFF files
using a two-byte-per-pixel format. One image usually con-
tains several hundreds of polonies (see Figure-3a,b). Using
one processor of an Intel Core 2 2GHz, image processing
takes 0.8+ .01s, the coarse detection step takes 0.0064+0.004s
per object and the refined detection takes 0.075 £ 0.03s per
object.

The gradient estimation is done with an implementation of
the Deriche filter [18]. The size parameter « of the Deriche
filter was set to produce appropriate edges in the expected
scale of the polonies. Low thresholds for the magnitude of
the gradient and the vote from the Hough transform were set
using a few sample images.

Fig. 2. Detail of a configuration of polonies

An example of the output produced by the program is
shown in Figure-3. The images (a-b) show a slide with a few
hundreds of detections made by the program. The zoomed
image (Figure-2) shows a configuration of multiple polonies.

To measure performance of the algorithm, we did a vi-
sual inspection of five images and found 1244 objects that
looked like polonies. The program was able to detect 1150
polonies, produced 13 false positives and missed 94 polonies
(< 7.5%), distributed as 33 overlapped polonies and 61 very
dim polony-like objects. The missed polonies that were par-
tially occluded are known to be related to a problem in the
coarse detection step, that assumes a single object, being un-
able to handle two objects with overlapping of more than half
of one object. False positives were produced by dirt on the
gel. Dirt was usually small and very bright in all channels
when using multi color registration. Thus, most of these false
detections could be eliminated with help of size and/or ampli-
tude information from detections in multiple channels.
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Fig. 3. Polony detection example. (a) original image: the dark
oval is the boundary of the gel, the small dots are the polonies
(b) image + detections.
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